2010年4月6日 星期二

【LEARNING】SSP - CH2












CH2重點: RECIPROCAL LATTICE , BZ , MILLER INDEX ,

以下引用WIKIPEDIA
http://en.wikipedia.org/wiki/Reciprocal_lattice
http://en.wikipedia.org/wiki/Brillouin_zone
http://en.wikipedia.org/wiki/Miller_index

我加上了重點及註解




Reciprocal latticeFrom Wikipedia, the free encyclopedia




In crystallography, the reciprocal lattice of a Bravais lattice is the set of all vectors K such that

e^{i\mathbf{K}\cdot\mathbf{R}}=1
for all lattice point position vectors R. This reciprocal lattice is itself a Bravais lattice, and the reciprocal of thereciprocal lattice is the original lattice.
倒晶格的倒晶格會是原晶格P12. 
For an infinite three dimensional lattice, defined by its primitive vectors  (\mathbf{a_{1}}, \mathbf{a_{2}}, \mathbf{a_{3}}) , its reciprocal lattice can bedetermined by generating its three reciprocal primitive vectors, through the formulae
\mathbf{b_{1}}=2 \pi \frac{\mathbf{a_{2}} \times \mathbf{a_{3}}}{\mathbf{a_{1}} \cdot (\mathbf{a_{2}} \times \mathbf{a_{3}})}
\mathbf{b_{2}}=2 \pi \frac{\mathbf{a_{3}} \times \mathbf{a_{1}}}{\mathbf{a_{2}} \cdot (\mathbf{a_{3}} \times \mathbf{a_{1}})}
\mathbf{b_{3}}=2 \pi \frac{\mathbf{a_{1}} \times \mathbf{a_{2}}}{\mathbf{a_{3}} \cdot (\mathbf{a_{1}} \times \mathbf{a_{2}})}.
P14
Each point (hkl) in the reciprocal lattice corresponds to a set of lattice planes (hkl) in the real space lattice. The direction of the reciprocal lattice vector corresponds to the normal vector to the real space planes. The magnitude of thereciprocal lattice vector is given in reciprocal length and is equal to the reciprocal of the inter planar spacing of the real space planes.
倒晶格每一點即代表一個SET OF PLANES, 一個倒晶格向量即代表REAL的一個法向量.(從MILLER INDEX即可看出.)
The reciprocal lattice plays a fundamental role in most analytic studies of periodic structures, particularly in the theory of diffraction.

For Bragg reflections in neutron and X-ray diffractionthe momentum difference between incoming and diffracted X-rays of a crystal is a reciprocal lattice vector.
The diffraction pattern of a crystal can be used to determine the reciprocal vectors of the latticeUsing this processone can infer the atomic arrangement of crystal.
可由BRAGG繞射實驗可知晶體結構, 方法是藉由分析入射及繞射後X-RAY的動量差即"倒晶格向量",有了倒晶格向量就知道了晶格內部的法向量,晶格的排列也就可以得知.

[edit]Reciprocal space

Reciprocal space (also called "k-space") is the space in which the Fourier transform of a spatial function is represented (similarly the frequency domain is the space in which the Fourier transform of a time dependent functionis represented). A Fourier transform takes us from "real space" to "reciprocal space".
F(\vec{k})=\int_{-\infty}^{\infty}f(\vec{r})e^{ -i \vec{k} \cdot \vec{r}}d^3 r.
A reciprocal lattice is a periodic set of points in this space, and contains the \vec{k} points that compose the Fourier transform of a periodic spatial lattice. The Brillouin zone is a volume within this space that contain all the unique k-vectors that represent the periodicity of classical or quantum waves allowed in a periodic structure.


Brillouin zone

From Wikipedia, the free encyclopedia


First Brillouin zones of (a) square latticeand (b) hexagonal lattice.
In mathematics and solid state physicsthe first Brillouin zone is uniquely defined primitive cell in reciprocal spaceThe boundaries of this cell are given by planes related to points on the reciprocal lattice. It is found by the same method as for the Wigner–Seitz cell in the Bravais latticeThe importance of the Brillouin zone stems from the Bloch wave description of waves in a periodic medium, in which it is found that thesolutions can be completely characterized by their behavior in a single Brillouin zone.
Taking surfaces at the same distance from one element of the lattice and its neighbors, the volume included is the first Brillouin zone
There are also secondthirdetc., Brillouin zones, corresponding to a sequence of disjoint regions (all with the same volume) at increasing distances from the origin, but these are used more rarely. 
2BZ 是由距晶格點第二近的晶格點中垂線圍成(要減掉1 BZ), 依此類推, 每BZ的面積一樣大.

密勒指數

維基百科,自由的百科全書


立方晶體中不同晶面的密勒指數
密勒指數是一種用來確定晶體方向的指數。要想計算出一個晶面的密勒指數(hkl)需要:
  1. 確定該晶面在晶格坐標軸上的截距
  2. 取這些值的倒數
  3. 將這些倒數化作最簡整數比
  4. 用括號將它們括起
以一個正方體的頂面為例,它在坐標軸上的截距為「1(h),+∞(k),+∞(l)」,這樣它們的倒數之比就為1:0:0,換句話說,用密勒指數表示就是(100)。密勒指數之所以使用倒數之比就是為了防止正無窮的出現。

沒有留言:

張貼留言